Identification	Subject	CHE 302 Heat transfer 6 ECTS			
	Department	Mechanical Engineering			
	Program	Undergraduate			
	Term	Spring 2024			
	Instructor	Dr. Mehdi Kiyasatfar			
	E-mail:	mkiyasatfar@khazar.org			
	Phone:	nikiyasattai e kilazar.org			
	Classroom/hours				
	Office hours				
D					
Prerequisites	Thermodynamics				
Language	English				
Compulsory/Elective	Compulsory Heat Transfer J.P. Holman, 10th Edition, McGraw-Hill, 2010.				
Required textbooks					
and course materials	Fundamentals of Heat and Mass Transfer F.P., Incropera, and D.P., DeWitt, T.L. Bergman, A.S. Lavine, 6th Edition, Wiley, 2007.				
0 1 4	Bergman, A.S. Lavine, 6	oth Edition, Wiley, 2007.			
Course website					
Course outline	^	ne flow of thermal energy due to gra	-		
	subsequent temperature	distribution and changes. Heat can	transfer to and from objects		
	through three processes:	conduction, convection, and radiation	on.		
	The fundamentals of he	at transfer and its applications, the o	classification of heat transfer		
		The fundamentals of heat transfer and its applications, the classification of heat transfer technology and different heat transfer methods, and the needs for augmentation and its			
	benefits are the subjects				
Course objectives		to provide students with the basic p	rinciples and applications of		
	heat transfer to engineer		······································		
Learning outcomes	•	on of this course students will be able	to:		
0					
	1. Ability to formulate governing partial differential equation(s) and necessar				
	boundary (and initial) conditions for any thermal problem.				
	2. Ability to determine the temperature and heat flux distribution using energy				
	conservation and/or Fourier heat law.				
	3. Ability to determine the heat flux and temperature distribution in steady-state				
		l problems using thermal resistance c			
	4. Ability to use numerical and/or graphical techniques to find temperature				
	distribution in two- and three-dimensional problems.				
	5. Ability to apply analytical techniques to find the temperature distribution in				
	6. transient conduction problems.				
	7. Ability to use the energy transport equation to determine the temperature and heat				
	flux distribution in laminar flow.				
	8. Ability to determine the heat flux in turbulent flows using empirical equations.				
		ate the heat transfer rate for different	heat exchangers.		
Teaching methods	Lecture		Х		
	Group discussion		Х		
	Experiential exercise		Х		
	Tutorials once a month				
	Case analysis and assignments		X		
Course paper					
	Others				
Evaluation	Methods	Date/deadlines	Percentage (%)		
Evaluation	Methods Midterm Exam		Percentage (%) 20		
Evaluation	Methods Midterm Exam Lab Report	During the semester	Percentage (%) 20 10		
Evaluation	Methods Midterm Exam Lab Report Quiz	During the semester During the semester	Percentage (%) 20 10 10		
Evaluation	Methods Midterm Exam Lab Report Quiz Assignment	During the semester	Percentage (%) 20 10 20		
Evaluation	Methods Midterm Exam Lab Report Quiz	During the semester During the semester	Percentage (%) 20 10 10		
Evaluation	Methods Midterm Exam Lab Report Quiz Assignment	During the semester During the semester	Percentage (%) 20 10 20		

X	Date/Day	Topics	Textbook/Assignments	
Tentative Schedule				
		• Lab report Each experiment has a report describing abstract, intro results, discussion, and analysis, and conclusion.	duction, procedure, readings,	
	• Assignment There will be a homework assignment for every chapter composed of problem			
		 Attendance Students who attend the sessions will get 5 marks. For three absence student loses mark. Quiz There will be quizzes for checking understanding of content during class. We are mgoing to give make up for a missing Quiz due to any reason other than medic report. 		
	 Professional behavior guidelines The students shall behave in a way to create a favorable academic and environment during the class hours. 		le academic and professional	
		• Cheating/plagiarism Cheating or other plagiarism in handling the assign Examinations will lead to course failure. In this case, t get zero (0), without any considerations.		
		• Withdrawal (pass/fail) This course strictly follows the grading policy of Engineering. Thus, a student is normally expected to ac to pass. In case of failure, he/she will be required to re term or year.	chieve a mark of at least 60%	
		 Preparation for class The structure of this course demands your individual effort outside the or extra practice of many problems within the textbook. After each se student needs to put sufficient time to practice and finish the assignment predetermined date. 		
Policy		• Ethics Copying other students' work is highly discouraged handled by the student himself. This is a university reprimanded accordingly.		

Week	Date/Day (tentative)	Topics	Textbook/Assignments
1		Syllabus & Introduction. Mechanism of Heat Transfer. Factors Affecting Heat Transfer. Engineering Applications.	Chap 1
2		Conduction Heat Transfer. Thermal Conductivity. Convection Heat Transfer. Radiation Heat Transfer. Dimensions and Units.	Chap 1
3		Steady-State Conduction: One Dimension -The Plane Wall. Insulation and R Values.	Chap 2

		1
4	Radial Systems. The Overall Heat-Transfer Coefficient. Critical Thickness of Insulation.	Chap 2
5	Heat-Source Systems: Cylinder with Heat Sources. Conduction-Convection Systems. Fins. Thermal Contact Resistance.	Chap 2
6	Solve problems. Lab	
7	Steady-State Conduction (Multiple Dimensions) Mathematical Analysis of Two-Dimensional. Heat Conduction: Graphical Analysis. The Conduction Shape Factor. Numerical Method of Analysis. Numerical Formulation in Terms of Resistance Elements. Gauss-Seidel Iteration.	Chap 3
8	Solve problems – Review. Midterm	
9	Unsteady-State Conduction: Lumped-Heat-Capacity System. Transient Heat Flow in a Semi-Infinite Solid. Convection Boundary Conditions.	Chap 4
10	Unsteady-State Conduction: Multidimensional Systems. Transient Numerical Method. Thermal Resistance and Capacity Formulation.	Chap 4
11	Principles of Convection: Viscous Flow. Inviscid Flow. Laminar Boundary Layer on a Flat Plate.	Chap 5
12	Principles of Convection: Energy Equation of the Boundary Layer. The Thermal Boundary Layer. The Relation Between Fluid Friction and Heat Transfer.	Chap 5
13	Practical Relations for Forced-Convection Heat Transfer: Empirical Relations for Pipe and Tube Flow. Flow Across Cylinders and Spheres. Flow Across Tube Banks. Liquid-Metal Heat Transfer.	Chap 6
14	Natural Convection Systems: Free-Convection Heat Transfer on a Vertical Flat Plate. Free Convection from Vertical Planes and Cylinders. Free Convection from Horizontal Cylinders. Free Convection from Horizontal Plates.	Chap 7
15	Solve problems. Lab	
16	Final Exam	